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ABSTRACT

This paper is concerned with designing fast stochastic observers for spacecraft point-
ing control. The motivation is to try to circumvent the long settling times associated
with the optimal Kalman filter, which are often on the order of several hundred sec-
onds in many typical spacecraft applications. For this purpose, the Karush-Kuhn-
Tucker (KKT) necessary conditions are used to solve for an optimal constrained
stochastic observer which minimizes the variance of the attitude estimate subject
to the constraint that its poles lie to the left of a specified vertical line in the
Laplace s-plane. A complete analytical solution is found for the typical case where
the attitude estimator is comprised of three decoupled single-axis observers, each of
second-order form. This results in a new fast observer design which can potentially
improve operational efficiency over a broad class of spacecraft missions.

1 INTRODUCTION

Observers are typically flown on-board spacecraft to produce estimates of the state required
by the pointing system for feedback control. If the observer has been optimized from a
statistical point of view (i.e., it is a Kalman filter), these time constants are generally long
(a few hundred seconds) for typical attitude estimators.

There is an unfortunate consequence of having a slow observer. Due to bias shifts which
often occur in the position measurement (i.e., the star tracker) when changing from one
attitude to the next, the observer’s step response is seen explicitly in the pointing control
response. This results in an undesirable drift error with a long settling time constant,
occurring each time the telescope is repositioned. Because of this effect, it can take several
hundred seconds for the control system to settle sufficiently before fine pointing can begin.
This is somewhat disconcerting when one realizes that science exposures (for which the
pointing is done in the first place) may only be on the order of 100 seconds or less. Hence,
when flying the optimal Kalman filter (KF), much of the mission may be “wasted” waiting
for the observer to settle. This waste of mission time is especially discouraging in missions



(such as Infrared Telescopes) whose lifetime is defined by a finite amount of a depletable
resource such as cryogen.

In order to overcome this difficulty, the present paper considers the problem of designing
fast on-board stochastic observers. Rigorously speaking, these are constrained stochastic
optimal observers which minimize the variance of the attitude estimate subject to the
constraint that their poles lie to the left of a specified vertical line in the Laplace s-plane.
Using the Karush-Kuhn-Tucker (KKT) necessary conditions, a globally optimal solution
is found for the typical case where the attitude estimator is comprised of three decoupled
single-axis observers, each of second-order form. This is the type of observer typically flown
on space telescope missions such as IRAS, Hubble, etc.

Background on observers for attitude estimation is given in Section 2. The fast observer
problem is then formulated in Section 3 as a nonlinear programming problem with noncon-
vex cost and constraints. To ensure a globally optimal solution, an approach is introduced
to make the constraints linear. The main result of the paper, given in Section 4, is a glob-
ally optimal solution to the original nonlinear programming problem. Examples are given
in Section 5 showing the optimal trade-off between observer speed and performance. Full
technical details behind the solution are included in the Appendix.

2 BACKGROUND

In this paper, the spacecraft attitude estimator is assumed to be comprised of three decou-
pled single-axis observers. The analysis will be restricted to a single axis and be performed
in continuous-time. This represents no loss in generality since each of the three axes can
be designed separately with the same approach, and discrete-time implementations can be
calculated using known transformations.

Consider the availability of a star tracker measurement of the form,
y=0+v (2.1)

where 6 is a small angle with respect to a local reference frame, and v is an additive white
noise error source. Here, the star tracker is modeled as a continuous measurement along
a single axis, and v is a continuous-time zero-mean white Gaussian noise source, where

E(@)o(i+71)) =r-8(7).
Since star tracker measurements are always discrete, the quantity r is calculated as the

power of an equivalent continuous-time noise process. For example, if a discrete-time star
tracker measurement update is available every A seconds, r can be calculated as,

r= Ao, /N (2.2)

where o,., is the noise equivalent angle in radians, 1-sigma per star, and N is the number
of stars per update.



The quantity r is important because (as will be seen) it is the only aspect of the tracker
design which effects the quality of the final attitude estimate. In fact, the inverse quantity
r~! has the interpretation of an “information rate” which can be used to compare the
quality of any two tracker designs on equal footing.

In actual implementation, the local frame is defined by propagating the full attitude
quaternion which ensures that the linearization and decoupling assumptions required for
the present analysis are satisfied.

In addition, consider the availability of a single-axis gyro measurement of angular rate
wy, given by,

wm = w—b—mn (2.3)
b = n, (2.4)

Here, w is the true angular rate, and n; and n, are independent, zero-mean white Gaussian
noise sources, (denoted as the angle random walk (ARW) and bias instability, respectively),
where E[n,(t)ni(t + 7)] = ¢ - 8(7), and E[ny(t)ny(t + 7)] = g2 - 6(r). The quantity b is
the gyro bias which generally has to be estimated in the observer along with the angular
position. *

Since rate is the derivative of position, one has,
f=w (2.5)

In order to avoid the need for modeling torques on the spacecraft, the gyro measurement
(2.3) is treated as an “exogenous input” which is substituted into (2.5) to give,

6 =w,+b+n (2.6)
Collecting state equations (2.4)(2.6) and measurement equation (2.1), gives,
§ = btwn+m (2.7)
b = ng (2.8)
y = 6+v (2.9)

By defining u £ w,, and z £ [§,5]7, equations (2.7)-(2.9) can be written in standard
state-space form as,

t = Az+Bu+w (2.10)
y = Cz+wv (2.11)
Aé[gé];Bé[é] (2.12)



ng

c&l10]l; wé[”l] (2.13)

Blo@u+7) = Q-6 @=| & 0| (214)

Ep(p(E+71)] = r-6(7) (2.15)

A full-order observer for state space model (2.10)(2.11) can be written in the following
standard form (3],

i = AZ+Bu+K(y-19) (2.16)
g = C3 (2.17)

where the gain matrix K has the form,

K = [ky, k)" € R? (2.18)
Let the state error be defined as,
elz—3 (2.19)
with associated covariance,
P A EleeT) = [p” Pz ] (2.20)
P12z P22

Then it is known that the covariance P propagates as (3],
P=P(A-KC)+(A-KC)P+Q+r KKT (2.21)

Letting P = 0 in (2.21), the resulting algebraic equations can be solved in closed form to
give the steady-state covariance as,

_ r(k3 + kky) + gk + o

S h (2.22)
rk% + q2

_ ki +a 2.

N L+ (2.23)
3 21.2 2 2
oy = UKD + 0k + ga(ks 4 K) (2.24)
2k ko

These expressions are useful because they show the explicit dependence of the estimation
variances on the observer gains k; and k,.



The characteristic polynomial of the observer (2.16)(2.17) can be calculated as,

: _ 3+ kl -1
det (sl — (A — KC)) = det [ ks s }
= s+ kis+k, (2.25)

The observer poles are calculated as roots of (2.25), to give,

—ky £/} — 4k
= 1- 7" (2.26)
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2.1 Optimal Stochastic Observer

The main focus of this paper will be on minimizing the variance of the angular position

error py; in (2.22), with respect to the observer gains k;, k2. To emphasize this dependence,

we define the cost function,

r(k% + k12k2) + Q1k2 + g2
2k ky

The optimal stochastic observer (i.e., a Wiener filter) can be found by minimizing the

variance (2.27) with respect to the observer gains ki, ks, i.e.,

min J(kl, kz) (228)
kl ’k2

J(kl, kz) é Pu = (227)

Strictly speaking, the gains should be constrained to be positive to ensure stability of the
observer. However, this will not be necessary since it turns out that k; and k; satisfying the
unconstrained problem (2.28) are always positive. Taking the derivatives of J and setting
them equal to zero gives a set of algebraic equations,

o7

oI _ 2.
3 =0 (2.29)
aJ

These two algebraic equations can be solved simultaneously to give the optimal observer
as,

Optimal Stochastic Observer

k= [2-(93)%+q—‘]% (2.31)
(

22y; (2.32)



The design (2.31)(2.32) is simply the steady-state Kalman filter and can be equivalently
found by solving an algebraic Riccati equation. However, the approach taken here will
allow us to introduce additional constraints on the observer poles.

The optimal gains (2.31)(2.32) can be substituted into (2.22)-(2.24) to give the optimal
estimation variances,

pn = V(g +2v@r)? (2.33)

P12z = QT (2.34)
L 1
P2 = ¢ (@ +2y/qr)? (2.35)
Given gains (2.31)(2.32), the poles of the optimal observer can be computed from (2.26)
as,
8§ = —(wptwe /(2 -1 (2.36)
where,
1
wn = kZ = (3—2)1- (2.37)
1 3
e
==|2+ 2.38
1) -
For convenience, the circle in the s-plane specified by |s| = w, will be denoted as the

“Kalman circle”.

It is instructive to consider the root locus as the parameter ¢; is increased relative to
2,/q;r. When ¢, < 2,/gs7, the poles are complex. Specifically, it is seen that when ¢; =0,
the system starts out critically damped with ¢ = 1/+/2. As g is increased the damping
factor ¢ increases, and the complex poles move along the Kalman circle toward the real
axis. They hit the real axis when ¢; = 2,/g27 to become repeated roots. When ¢1 > 2,/gs1,
the poles become split-real, and go off in opposite directions —~ one towards the origin, and
one towards —oo.

In general, these poles may be too sluggish to support efficient on-orbit spacecraft
operations. A particularly bad situation arises from the split-root case where one of the
poles moves toward the origin as ¢; is increased relative to 2,/g;7. However, even in the
best case when the optimal poles are complex and critically damped (i.e., when ¢; = 0),
the observer may be sluggish due to the fact that wy, is a low frequency (i.e., the optimal
filter needs to smooth over a long data window to minimize the variance of the estimate).



2.2 Optimal Constrained Stochastic Observers

Instead of the unconstrained problem (2.28), consider the modified problem,

Fast Observer

min J(k;, kp) (2.39)
ky k2
subject to, .
Real{poles of s? + k;s + k;} < - (2.40)

This problem minimizes the estimation variance subject to the constraint that the poles of
the observer are to the left of a vertical line in the Laplace s-plane at —1/7. This ensures
that the longest fime constant of the observer is shorter than 7.

REMARK 2.1 It is worth noting that problem (2.39)(2.40) is equivalent to the following
Bilinear Matrix Inequality (BMI): '

X, Pr;10i,1'1M>0 Trace{W P} (2.41)
P(A-KCY+(A-KC)P+Q+r-KKT=0 (2.42)
M(A-KC)T +(A-KC)M + % "M<0 (2.43)

where W is a diagonal weighting matrix.

The main result of the paper is a complete analytic solution to problem (2.99)(2.40).

3 FORMULATION

3.1 Pole Location Parametrization

Instead of using observer gains, it will be useful to reparametrize the problem in terms of
pole locations. To this end, let the poles of the observer be denoted as p;, p; where,

p & —a+4d (8.1)
pr & —ar—jb (jEV-D) (3.2)

and such that the quantities a;, az, b are constrained according to,
bla; —az) =0 (3.3)

This constraint is motivated by the observation that if b # 0 the poles form a complex
conjugate pair in which case a; = a;. However, if b = 0 the poles are real and a, does not

necessarily equal a,.



Using (3.1)(3.2) and (3.3), one can compute,

P +kis+k = (s—p1)(s—p)=5>—(p1+p2)s +pip2

= s’ + (a1 +az)s + a1az + b° (3.4)

or equivalently,
ki = a1+ a; (3.5)
ks = aia; + b (3.6)

~ These expressions can be combined to write the constrained problem (2.39) as the
following single nonlinear programming problem,

min  J(a; + a3, aja; + b?) 3.7
1,32,
subject to,
b(az - (11) =0 (3.8)
1
> — .
a2 - (3.9)
>1 (3.10)
aq ~2 7 .
b>0 (8.11)

where the cost function J(ki, k;) is defined in (2.27). The restriction b > 0 is made without
loss of generality, to avoid redundant solutions from complex pole symmetry about the real
axis. The equality constraint (3.8) can be satisfied in only one of two possible ways: Either
b = 0, in which case the poles are both real and a, and a, separately satisfy the half-plane
constraints (3.9)(3.10); or > 0, in which case a; = a;, and the poles are complex conjugate
with the same real part.

Unfortunately, the constraint region (3.8)-(3.11) is not convex, and does not even have
interior points (i.e., the constraint set lies on a two-dimensional manifold in a three-
dimensional space). For this type of constraint region, it is well-known that the Karush-
Kuhn-Tucker (KKT) conditions may fail to be necessary conditions for a local minima
[2][5]. Instead, the problem will be reformulated next to ensure that the KKT conditions

are necessary.



3.2 Linear Constraint Reformulation

Constraints are reformulated to be linear by considering the real and complex root cases
separately in problem (3.7).

Real Root Case

If the roots are real, then b = 0 and the gains are given by k; = a; + a2 and k; = a;a;.
Hence, the cost J(ki, k) becomes a function of only the two parameters a; and a;. The
resulting real-root optimization problem can be stated as,

51;1'1“1: J(a1 + a2, a1a;) ‘(3.12)

subject to, .
a > -I— (3.13)
a2~ (3.14)

It is noted that constraints (3.13)(3.14) are linear.

Complez Root Case

If the roots are complex, then the real parts are the same and one may invoke the
notation a 2 a; = a;. In this case the gains are given by k; = 2a and k; = a? + b2
The cost J(k1,kz) becomes a function of only the two parameters a and b. The resulting
complex-root optimization problem can be stated as,

min J(2a, a® + b*) (3.15)

subject to,

a> (3.16)

N |

It is noted that the constraint (3.16) is linear.

For simplicity, the limiting case of a repeated real-root solution has been permitted to
exist in both the above cases.

Since the roots of the observer must be either real or complex (there are no other choices)
the global optimal of the original problem (3.7) must be one of the two global optimals arising
from considering each problem ($.12) and (3.15) separately. Furthermore, since constraint
sets in both problems are now linear, it is known that the KKT conditions (cf., (A.4)-(A.7)
in Appendix A) are necessarily satisfied by the global constrained minimum of each problem

when considered separately [2][5].

This leads to the following strategy for finding the global constrained optimal to the
original problem:



e Find all of the points which satisfy the KKT conditions for the real root case (3.12),
and then do the same for the complex root case (3.15). Combine these points into a
single list, which then represents a complete set of candidate solutions to the original

problem.

o Evaluate the cost of each candidate solution on the list. The one that minimizes the
cost is the global constrained optimal solution to the original constrained problem

(3.7).

It will be seen that the “list” of candidate solutions produced in the first step is always
finite, so that the overall procedure is guaranteed to be finite. The list of candidate solutions
satisfying the KKT conditions for the real and complex cases separately, is determined
systematically in Appendix B.

3.3 Normalized Variables

It will be convenient to express the final solution in terms of normalized variables:

péq—l-fz; A2 4 (3.17)
r r
7 2T 2 & axT; I3 L pr (3.18)
The observer gains (3.5)(3.6) can be written in terms of these normalized variables as,
kl = ($1 + .’Ez)/’l' (319)
kz = (zyz5+4 23)/7? (3.20)

Substituting gains (3.19)(3.20) into the cost function J(ky, k;) in problem (3.7) yields upon
rearranging,

r -
J($1,$2,$3) = ; . J($1,$2,$3) (321)
where,
= -1
J = [2:1 + 2o+ (21 + x2)‘1 (3313:2 +zi4pu+v (m1x2 + x%) )] (3.22)
Letting z £ [z1, z2, z3], the problem (3.7) can be written equivalently as,
min J(z) (3.23)
subject to,
z3(z1 —22) =0 (3.24)
1-2,<0 (3.25)

10



1-2,<0 (3.26)
—23<0 (3.27)

Using the second-derivative test given in Rockafellar [6] (Theorem 4.5, pp. 27), the cost
function J can be shown to be non-conver. The quantity J has been used as the cost in
the minimization (3.23) instead of J. This represents no loss of generality since they are
related by a constant scale factor (3.21).

For a given time constant 7, any candidate solutions z;,z;,z3 to the minimization
problem (3.23), can be converted to the associated pole locations using (3.18).

4 CONSTRAINED PROBLEM SOLUTION

4.1 Main Result

The main result of this paper is an analytic globally optimal solution to the nonlinear
programming problem (3.23). To this end, a finite list of candidate solutions are generated
using the following rules.

Case R-I(i) (Optimal real-pole Kalman filter solution)

[:1:1,2:2,3:3] =

(=) (=2 ]

is a candidate solution if z; and z, are real, and the inequalities z; > 1, z, > 1 hold.

Case R-I(ii) (Repeated real poles)
If the following inequality holds,

[,u+\/#2+6—01/r o1 (42)

10

then a candidate solution is given by,

<u+\/;7¢@7)%,<u+\/m)%,o] (4.3)

[3:1, Z2, 333] =

10 10

Case R-II (Split real poles, one at s = —1/7)
Compute the roots \;, 1 = 1,...,4 of the following fourth order polynomial,

p)=z+223+ (2 -z - 2wz —v =0 (4.4)

11



For each A; which is real and satisfies A; > 1, a candidate solution is given by,

[z1,z2, 23] = [N, 1, 0] (4.5)

(Note, at most four candidate solutions can be generated from this single case).

Case R-IV (Repeated real poles at s = —1/1)

A candidate solution is given by,

[21, 22, 23] = [1,1,0) - (4.6)

Case C-I (Optimal complez-pole Kalman filter solution)
If the following inequalities hold,

ovw ) 21 (47)

p<2\/v (4.8)

then a candidate solution is given by,

on,oa,2s) =[5 (v +0)* 5 (v + )5 (v - )] (49)

Case C-II (Complez poles on Kalman circle |s| = w, at Real(s) = —1/7)
If \/v > 1, then a candidate solution is given by,

[$1,$2,$3] = [1) 1’(\/;_ 1)%] (410)

A sweep through the above rules produces a list of candidate solutions. By construction,
the globally optimal constrained solution to the original problem (3.23) is guaranteed to be
contained on this list. It is found by evaluating all of the candidate solutions, and keeping
the one with minimum cost (i.e, minimum variance).

12



5 EXAMPLES

Fast observer designs will be applied to two examples. The first example is chosen such
that the optimal Kalman filter has complex poles. The second example is chosen such that
the optimal KF' has real poles.

5.1 Example 1: Complex Pole KF

Consider the hardware parameters, ¢; = 8.462 x 107!® (rad?/sec?)/Hz, g, = 6.529 X
10~% (rad?/sec')/Hz, r = 1.653 x 10~'* rad?/H z.

The optimal Kalman filter as computed from (2.31)-(2.32) has gains k¢ = .011438,
k, = 6.2854 x 10~%, with complex pole locations —.00572 + .005491 and a time constant
of 175 seconds. Using results in Section 4, fast observers having reduced time constants
of 7 = 180, 140, 100, 60, 20 are designed and their performance is summarized in Table 5.1.
The constraint regions which are traversed are depicted in Figure 5.1 For physical mean-
ingfulness, the cost is expressed as the square root v/J of the estimation variance, in units
of arcseconds.

For this example, it is seen that (except for the 7 = 800 case) both poles of the con-
strained design always lie on the constraint boundary Real(s) = —1/7. For r = 180 (which
is longer than the unconstrained optimal KF time constant of 172), the constrained and
unconstrained optimals are the same (region C-I). As 7 is decreased further, the poles fol-
low the constraint boundary (region C-I) as complex conjugate pairs on the Kalman circle
|s| = wy. This continues until they become repeated-real poles at

= Z}' = (=) = 126.14 (sec) (5.1)
n 2

and then follow the constraint boundary (region R-IV) as repeated roots on the real axis.

Fast Observers

l T l Case# [ z, I T3 ] z3 ] ki I ko ] poles l \/.7(as) ]
180 C-1 1.0294 | 1.0294 | .98831 | .01144 | 6.285e-5 | —.00572 £ .00549; | .02836”
1749 | Opt KF | NA NA NA |[.01144 | 6.285e-5 | —.00572 + .005497 | .02836”
140 | C-1I 1 1 4816 | .01429 | 6.285e-5 | —.00714 + .00344; | .02871”
100 | R-IV 1 1 0 .02000 | 1.000e-4 -.01, -.01 .03094”
60 R-IV 1 1 0 .03333 | 2.778e-4 | —.0167, —.0167 | .03854”
20 R-IV 1 1 0 .10000 | 2.500e-3 —.05, —.05 .06631”

Table 5.1: Designs for the case of g; = 8.462 x 10718, ¢, = 6.529 x 10~2?!,r = 1.653 x 10~12

13



Figure 5.1: Constraint regions when detuning a complex-pole Kalman filter

5.2 Example 2: Real Pole KF

Consider the hardware parameters ¢; = 3.385 x 10~!® (rad?/sec®)/Hz, q¢» = 6.529 x
1072 (rad?/sec*)/Hz, r = 1.653 x 1072 rad?/H =.

The optimal Kalman filter has gains k; = .046623, k; = 6.2854 x 107°, with real-split
pole locations at —.04523,—.001390, and a time constant of 720 seconds. As discussed
earlier, the KF is sluggish due to a single slow real pole, which always occurs under the
split-root condition ¢; >> 2,/g;7. To overcome this sluggishness, fast observers having
reduced time constants of 7 = 800, 180, 140, 100, 60, 20 are designed and their performance
is summarized in Table 5.2. The constraint regions which are traversed are depicted in

Figure 5.2.

For 7 = 800 (which is longer than the unconstrained optimal KF time constant of 720),
the constrained and unconstrained optimals are the same (region R-I(i)). As 7 is decreased
from 180 to 60, the pole closest to the origin moves left with the constraint boundary while
the other pole (deeper in the LHP) moves right to meet it (region R-II). After they meet,
both poles follow the constraint boundary as repeated roots on the real axis (region R-IV).

The break-point between regions R-II and R-IV occurs at the point where the two real
poles meet. This can be found by setting z; = z; = 1 in the polynomial (A.30) associated
with region R-II, to give

p+3v=>5 (5.2)

Substituting (3.17) into (5.2) and solving for 7 as the only positive root gives the break

14



Fast Observers

| VJ(as) |

| T [Case# | T | z | z3 [ ky l k, l poles
800 | R-I(i) 36.187 | 1.1116 | 0 | .046623 | 6.2854e-5 | —.04523,—.001390 | .057255”
720 | Opt KF| NA NA | NA |.046623 | 6.2854e-5 | —.04523,—.001390 | .057255”
180 | R-II 7.1605 1 0 |.045336 | 2.2100e-4 | -.039781, -.005556 | .058028”
140 | R-1I 5.3061 1 0 |.045043 | 2.7072e-4 | -.037901, -.0071429 | .058350”
100 | R-1I 3.4433 1 0 |.044433 | 3.4433e-4 | —.034433, —.01000 | .058856”
60 | R-II 1.5418 1 0 |.042363 | 4.2828e-4 | —.025697, —.016667 | .059599”
20 |R-IV 1 1 0 | .01000 | 2.5000e-3 | —.05000, —.05000 |.071520”

Table 5.2: Designs for the case of ¢; = 3.385 x 10715, ¢, = 6.529 x 10~%!,r = 1.653 x 10712

RIV | R-II | R-I(3) | o Kalman
| | Circle , 1
[ l n =[{92)4
: e e ()
|
|
i
‘/: KF poles
—(D,.(C,: ch -l) \ . Re
break point
p+3v=>5

Figure 5.2: Constraint regions when detuning a real-pole Kalman filter

point as,

T =

—u (@ e0(E)]?

6(%)

= 49.07 (sec)

(5.3)

Before this break point, the fast observer reduces the time constant of 7 = 720 seconds
(associated with the optimal KF), by more than a factor of 10 to 7 = 60, with less than
5% degradation in the estimation error (i.e., from .057255 to .059599 arcseconds). After
the break point, performance falls off somewhat quicker, with the 7 = 20 design providing
an estimation error of .071520 arcseconds.
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6 CONCLUSIONS

A complete solution is found for designing constrained stochastic observers of second-order
form, which minimize the variance of the attitude estimate subject to the constraint their
poles lie to the left of a specified vertical line in the Laplace s-plane. Such fast observers can
potentially improve operational efficiency across a wide class of spacecraft missions. These
results also support the reconfigurable control approach introduced in [1] which improves
performance by switching among a bank of detuned observers.

Examples are given showing the optimal trade-off between fast observer speed and
performance. While the approach may be useful across a wide range of applications, the
advantages are particularly pronounced in problems where the optimal KF has split real
roots. An example of this form was given where the time constant of the optimal Kalman
filter is reduced by factor of 10, with less than a 5% degradation in estimation error.

A APPENDIX: Nonlinear Programming Solution

Consider a general nonlinear programming problem of the form,

min J(z) (A.1)
subject to,
gi(z) <0, t=1,..,m (A.2)

Assume that the cost function J(z) is differentiable, but not necessarily convez. Assume
further that the constraints g(z) = [g1, ..., gm]T are linear, i.e.,

g(z)=Cz+d, CeR™", deR™ (A.3)

Then it is known (Karlin [4], p. 203) that under these conditions, any local minimum
z° of problem (A.1) (and the global minimum in particular) must necessarily satisfy the
following KT conditions:

V(%) = =3 ul V(=) (A-4)
=1

gi(z°) < 0, (A.5)

w20, (4.6)

ulgi(z°) = 0; t=1,..,m (A.T)

The importance of having necessary conditions cannot be overstated. It implies that by
enumerating all possible solutions to the KT conditions, one is guaranteed to find the global

constrained optimal among them.
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A.1 Real Root Case z3 =0

Letting z3 = 0 in problem (3.23), restricts its solution to the real-root case. With this
restriction, the problem can be written equivalently as a nonlinear program in the form

(A.1)(A.2) with the following choices,

min J¥(z) (A.8)
z £ [zy,z,)7 (A.9)
JR(z) A [:1:1 + 23 + (21 + 23)™? (m1z2 +u+ 1/(:1:13:2)'1)} (A.10)
RgNA|1—2
g(a:)—[l_xz]so - (A1)
Applying the KKT condition (A.4), gives,

aJR
v J¥z) = [ g& (A.12)

8z2

1— (21 + 22)"2 (2122 + p + v(z122)7Y) + (21 + 22) 7" (22 — va7 223"
1= (21 + 22)" 2 (2122 + p + v(z122)7Y) + (21 + 22) 71 1252

I — VT Ty

o o uo
= v le) - g vl = | 4 | (419)
Now consider the four possible cases determining which constraints are active:
Case R-I [u§ = 0,u$ = 0]
Case R-II [u§ = 0,u$ > 0]
Case R-III [u$ > 0,u$ = 0]
Case R-IV [u{ > 0,u$ > 0]

Case R-I [u{ =0,u3 =0)
The choice [u¢ = 0,u§ = 0] implies from (A.13) that

v JR(z)=0 (A.14)
Hence, one can equate, A A

aJ oJ

= A.15

6211 6.’1:2 ( )
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and cancel terms to give the expression,

= ] = (z1 +22)7 [zl - 2] (A.16)

:1211:2 .'1212:2

(z1 + z2)7} [212 -

Now z; > 1 and z; > 1 imply that z; + z; > 0, so that equation (A.16) is equivalent to,
v v
S A )

(z2z} —v)zy = (ziz} - v)zy (A.18)

From (A.18), one can conclude only two possibilities:

or upon rearranging,

Case R-1(i) 22z = v
Case R-I(ii) z2z2 # v which implies z; = z,
These sub-cases are treated separately below.

Case R-I(i)

Substituting
izl =v (A.19)
into the expression, %{ER = 0 of (A.13), gives upon rearranging,
= —p=0 (A.20)
z1

Since z; > 1 is non-zero, one can multiply both sides of (A.20) by z2 to give,
g} —pzl+v=0 (A.21)

Solving for roots of the fourth order polynomial (A.21) explicitly gives,
1
2

pEvp -4y */‘2?:_47] (A.22)

$1=+[

where only the positive root is considered because z; > 1 ensures nonnegative values of z;.
Knowing z;, one can solve for z; from (A.19) to give,

Ty = vv (A.23)

Z

Here, the negative root —+/v is not considered since the left hand side must always be
nonnegative. Without loss of generality, one can always choose the positive root on the

18



radical in (A.22), because the expression for z; in (A.23) gives the corresponding negative

root, i.e.,
< 1 1
/112 — 2 —/ 2 _ 2
+ [——~———“ + g 4”] ; =+ ["——————’2‘ 4"] (A.24)

ry =

Equation (A.24) provides the desired expressions for z; and z,.

Case R-I(ii)
In this case, z2z2 # v holds in (A.18) which implies that

= Iy (A25)
Substituting (A.25) into the expression §2- = 0 of (A.13) gives upon rearrangmg,

Solving the fourth order polynomial (A.26) explicitly gives,

(A.27)

Given the constraint z; > 1 and the fact that z; must be real-valued, only one of the four
solutions in (A.27) needs to be considered, specifically,

$1=+

1
2 1
¢+ 5+ 20" [+ VEETe0v)® A2
2 B 10 (A.28)

Equations (A.28) and (A.25) are the desired expressions for z; and z,.

Case R-II [u$ = 0,u$ > 0]
The choice u$ = 0,u$ > 0 implies that gf¥(z) =1 — 22 =0, i.e,,

2y =1 (A.29)
Substituting z, = 1 into the express1on = 0 of (A.13) gives upon rearranging,
4223 + (2 - ,u,)xf —2vz—v=0 (A.30)

Roots of (A.30), denoted by z; = )\, ¢ = 1,...,4, which are real and satisfy z; > 1 are
candidate choices for z;.
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Case R-III [u$ > 0,u = 0]
Case R-III is omitted because it gives identical redundant solutions to Case R-II, (with
the labels of z; and z, reversed). To see this, make the replacements,

Typ & g (A31)
Cul el (A.32)
in the KKT condition (A.13), and note that the condition is left unchanged.

Case R-IV [u{ > 0,u} > 0]
The choice u$ = 0,u3 > 0 implies that g(z) = 0, i.e., both state constraints are sa.txsﬁed

with equality,
z, =1 (A.33)

A.2 Complex Root Case z9 = 1,

Letting z; = z; in problem (3.23) restricts its solution to the complex-root case. With this
restriction, the problem can be written equivalently as a nonlinear program in the form
(A.1)(A.2) with the following choices,

min JC(z) (A.35)
z 2 [z1,z3)7 (A.36)
1 v -1
Jc(x) = 2.'131 + ‘2—2‘; (ml + .'Z:s + H + 2 + 273) } (A.37)
¢%(z)=1-2, <0 (A.38)

Applying the KKT conditions, gives,

e
vJC(z) g5k

| 9z3

B -2 z—l _
2- % (22 + 23+ u+ z) + 5 (201 = (2 +23)7)
(2:1:3 — 2uzy(z? + z2)” 2)

L 221

= w0y el(z) = [ ] (A.39)

Now consider the two possible cases:
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Case C-I [u§ = 0]
Case C-II [u§ > 0

Case C-I [u$ = 0]
The choice u$ = 0 implies from (A.39) that
v JC(z) =0 (A.40)

This gives 2 equations in 2 unknowns. Specifically, from the bottom equation % =0 of

(A.39) one has (given that z; > 1),
| 223 = 2vza(2? + 22)~? (A.41)
which gives upon cancelling terms, |
2+ 22 =v (A.42)

Here, the negative root —+/v is not considered since the left hand side must always be
nonnegative.

From the top equation % = 0 of (A.39) one has upon rearranging,
1
2V + )\ ?
o=+ (_‘/_z_—“) (A.43)

Here, the negative square root is not considered because z; must be non-negative due to
constraint z; > 1. Substituting (A.43) into (A.42) and rearranging gives,

o (202)] (at0

Here, the negative square root is not considered to avoid redundant identical solutions (i.e.,
z3 is the imaginary part of one of a pair of complex conjugate poles). Equations (A.43)
and (A.44) are the desired expressions for z; and z3, respectively.

Case C-II [u > 0]
The choice u? > 0 implies from the KT condition (A.7) that g%(z) =1 —z; =0, i.e,
2 =1 (A.45)

From the bottom equation 25 = 0 of (A.39) one has (upon cancelling terms),

aza
zi + 23 = Vv (A.46)
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Here, the negative root —+/v is not considered since the left hand side must always be
nonnegative. Substituting (A.45) into (A.46) gives upon rearranging,

z3 = (Vv —1)} (A.47)

Here, the negative square root is not considered to avoid redundant identical solutions.
Equations (A.45) and (A.47) are the desired expressions for z; and z3.
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